SOVIET PHYSICS - CRYSTALLOGRAPHY

VOL. 15, NO. 4 J.

JAN.-FEB., 1971

HYDROTHERMAL SYNTHESIS AND X-RAY DIFFRACTION ANALYSIS OF CERTAIN BARIUM SILICATES

O. S. Filipenko, B. N. Litvin,

E. A. Pobedimskaya, and N. V. Belov

M. V. Lomonosov Moscow State University Translated from Kristallografiya, Vol. 15, No. 4, pp. 863-865, July-August, 1970 Original article submitted December 8, 1969; revision submitted February 11, 1970

The $BaO-SiO_2-H_2O$ system has long attracted attention as a result of the binder properties of barium silicates [1]. In contrast to the analogous calcium system, which has been investigated rather frequently, particularly under hydrothermal conditions [2], only one study has been made of this barium system during the past 30 years [3]. Production of barium silicates by sintering [4] and by synthesis from aqueous solutions [5, 6] has been reported, but neither technique has yielded crystals suitable for x-ray diffraction analysis, without which research on the system cannot be regarded as complete, even for technological purposes.

of

The barium silicates were synthesized in autoclaves with a temperature gradient ($\Delta T = 20$ -30°C). The initial reagents were chemically pure barium hydroxide and x-ray amorphous silica. An aqueous Ba(OH)₂ solution placed in the autoclave served simultaneously as the solvent for the silica and as the barium source. Table 1 gives the results of a series of experiments (T = 450 °C, P = 800-2000 atm).

The following succession of phases could be quite clearly traced as the Ba(OH)₂ concentration was raised at BaO/SiO₂ molar ratios of 0.5-1.5: BaSi₂O₅ \rightarrow Ba₂Si₃O₈ $\rightarrow \alpha$ -BaSiO₃. A similar phase sequence was previously observed for silicates of the Na_XMe_ySipO_q type [7], where, as the NaOH concentration was increased, the silicates that crystallized presumably had fewer associated silicate radicals [Si₂O₆]_{∞} \rightarrow [Si₂O₇] \rightarrow [SiO₄].

We naturally expected that silicates containing simpler radicals would crystallize when the $Ba(OH)_2$ concentration was raised, but the difference in the chemism of the two solvents [8] did not permit us to anticipate a full analogy. According to Douglass

TABLE 1			
Exp.	Ba(OH) _z	BaO/SiO ₂	Results of synthesis
No.	conc., wt.%	molar ratio	
1 2 3 4 5 6 7 8 9 10 11 12* 13 14 15	5 12 15 32 33 40 40 40 40 40 40 45 45 57 57 57 57 60 70	$\begin{array}{c} 0,1:1\\ 0,1:1\\ 0,35:1\\ 0,7:1\\ 2,5:1\\ 3:1\\ 1,4:1\\ 2,1:1\\ 4:1\\ 1:4\\ 2,5:1\\ 1,4:1\\ 4:1\\ 1.4\\ 2,5:1\\ 1,75:1 \end{array}$	$\begin{array}{c} BaSi_2O_2 + Ba_2Si_3O_8 + SiO_2\\ BaSi_2O_3 + Ba_2Si_3O_8 + SiO_2\\ BaSi_2O_3 + Ba_2Si_3O_8 + SiO_2\\ BaSi_2O_3 + x - BaSiO_3\\ x - BaSiO_3 + x - BaSiO_3\\ x - BaSiO_3 + C\\ Ba_2Si_3O_8 + x - BaSiO_3\\ x - BaSiO_3 + C\\ BaSi_2O_3 + SiO_2\\ x - BaSiO_3 + C\\ x - C\\ x - BaSiO_3 + C\\ x - $
16	70	3:1	z-BaSiO ₃ + C
17	90	2,5:1	z-BaSiO ₃ + A

• The solutions with a $Ba(OH)_2$ concentration of 57% or more were prepared at 60-90°C.

755